Generalised Hadamard matrices which are developed modulo a group
نویسندگان
چکیده
منابع مشابه
Which elements of a finite group are non-vanishing?
Let $G$ be a finite group. An element $gin G$ is called non-vanishing, if for every irreducible complex character $chi$ of $G$, $chi(g)neq 0$. The bi-Cayley graph ${rm BCay}(G,T)$ of $G$ with respect to a subset $Tsubseteq G$, is an undirected graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(tx,2)}mid xin G, tin T}$. Let ${rm nv}(G)$ be the set of all non-vanishi...
متن کاملGroup actions on Hadamard matrices
Faculty of Arts Mathematics Department Master of Literature by Padraig Ó Catháin Hadamard matrices are an important item of study in combinatorial design theory. In this thesis, we explore the theory of cocyclic development of Hadamard matrices in terms of regular group actions on the expanded design. To this end a general theory of both group development and cocyclic development is formulated....
متن کاملGroup developed weighing matrices
A weighing matrix is a square matrix whose entries are 1, 0 or −1, such that the matrix times its transpose is some integer multiple of the identity matrix. We examine the case where these matrices are said to be developed by an abelian group. Through a combination of extending previous results and by giving explicit constructions we will answer the question of existence for 318 such matrices o...
متن کاملCryptographic Boolean functions via group Hadamard matrices
For any integers n m n m n we construct a set of boolean functions on Vm say ff z fn z g which has the following important cryptographic properties i any nonzero linear combination of the functions is balanced ii the nonlinearity of any nonzero linear combination of the functions is at least m n iii any nonzero linear combination of the functions satis es the strict avalanche cri terion iv the ...
متن کاملWhich Nonnegative Matrices Are Slack Matrices?
In this paper we characterize the slack matrices of cones and polytopes among all nonnegative matrices. This leads to an algorithm for deciding whether a given matrix is a slack matrix. The underlying decision problem is equivalent to the polyhedral verification problem whose complexity is unknown.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1992
ISSN: 0012-365X
DOI: 10.1016/0012-365x(92)90624-o